第2回 神戸大学総合研究サロン テーマ:防災・減災 12月17日,2012,神戸

巨大地震・地震災害に対する 統合シミュレーションの開発

堀宗朗 東京大学地震研究所

HIGH PERFOMANCE COMPUTING

高性能計算(並列計算)

- 多数の計算ユニットを使用することで,計算速度を向上
- 計算ユニット間のデータのやり取りの削減が重要

構造物のシミュレーション ▶

- 超高層ビル
 - High Fidelity モデル - 地盤-構造連成の大規模計算

- RC橋脚
 - -破壊モデル
 - 鉄筋コンクリートの破壊現象

PHYSICS: CHAOTIC BEHAVIOR

at high loading rate

MATHEMTICS: DISCRETIZATION

derivative coincides with ordinary discretization

 x^{1} f^2 x^2 x^3

Use of non-smooth basis functions of discretization, in order to efficiently treat multiple-cracking

COMPUTATION

Metropolitan Expressway Co. Lt.d & Kajima Co. Lt.d

DETAILED MODELING

29,740,00

4,860,000

14,580,00

0

element

a) whole view

b) column

DETAILED MODELING

a) steel bar embedded in pier

b) surface covered by rectangular elements of 15 x 7.4 mm

TENATIVE RESULTS

a) whole view

b) connecting part

c) cross section at connecting part

TENATIVE RESULTS

a) surface

b) stress distribution inside of column

MODEL DETAILS

RESPONSE

巨大地震津波による災害予測の現状と将来

防災・減災に資するシミュレーション

・リスクマネジメントの枠組み

- 想定 地震・津波・災害の予測
- 判断
- 対処 ハードウェア 耐震設計, 耐震補強 ソフトウェア 保険
- シミュレーションの役割

 - 経験ベースからシミュレーションベースへ

 - 保険産業の信頼を得る科学的合理性

都市のシミュレーション

• 東日本大震災の事例再現

• 首都直下地震の事例予測

• 南海トラフ巨大地震の群衆避難

velocity (m/s) Original

Modified city model

Time: 0.0 (s)

Target Area

Center of Tokyo Metropolis

Target Area

エージェントの設計

class diagram

agent

parameters

μ	average of agent maximum speed [m/s]				
σ	SD of agent maximum speed [m/s]				
R	visibility radius [m]				
D	dimension of forward domain [m] (domain: <i>D</i> x2 <i>D</i>)				
т	speed reduction rate in passing				
θ	modification of moving angle in passing [deg]				
Р	probability of making forced passing				

計測された歩行速度分布の予測と再 現

	計測値		シミュレーション	
	混雑	非混雑	混雑	非混雑
平均值 [m/s]	1.08	1.40	1.06	1.39
標準偏差 [m/s]	0.55	0.57	0.51	0.59

60m

MALTI-AGENT SIMULATION

- KISS Principle from "Keep Is Simple, Stupid" to "Keep It Smart and Sophisticate
- Agent functionalities
 - see environment agent
 - think terminal open space
 - move speed take-over/pose

agent visibility

IMPROVEMENT OF AGENT NAVIGATION

INTRODUCTION OF OFFICIAL AGENT

おわりに

- 構造物のシミュレーション
 - 基礎研究
 - 詳細モデルの構築と超高性能解析
- 都市のシミュレーション
 - 統合技術
 - 複合災害: 地震動と津波, 被害と対応